

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	JSON Document 0.8 documentation

JSON Document

This package provides intuitive and powerful binding system for JSON documents.
It bridged the gap between raw python objects, json schema and json files. A
powerful default system also allows developers to access an empty document and
see the default values from the schema without any code changes.

Installation

You can install json-document from source using pip. Please note that currently
the code is in alpha stages and is not recommended outside of the early
adopter group.

Table Of Contents

	Basic features
	Setting and accessing value

	Using document schema

	Core features
	Supported types

	Default schema

	Schema on fragments

	Using default values

	Reverting to defaults

	Fragments and references

	Orphaned fragments

	Advanced features
	Custom fragments

	Value bridge

	Fragment bridge

	Code Reference
	json_document.document

	Exceptions

	json_document.serializers

	json_document.storage

	json_document.bridge

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JSON Document 0.8 documentation

Basic features

If you have a few seconds, just read the next two sub-sections.

Setting and accessing value

You can use a Document class much like a normal python
object. If you are using JSON via raw dictionaries/lists
you’ll find that a lot of things are the same:

>>> from json_document.document import Document
>>> doc = Document({})
>>> doc['hello'] = 'world'

The first major difference is evident when you want to refer to data. Instead
of returning the value directly you get an instance of
DocumentFragment. To access the value you’ll
have to use the value
property:

>>> doc['hello'].value
'world'
>>> doc.value
{'hello': 'world'}

Accessing the fragment directly is also possible and indeed is where a lot of
the value json_document brings is hidden. To learn about that though you’ll
have to learn about using schema with your documents.

Using document schema

Schema defines how a valid document looks like. It is constructed of a series
of descriptions (written in JSON itself) and is quite powerful in what can be
expressed. If you have no experience with JSON-Schema you can think of it as
DTD for XML on steroids. Don’t worry it’s easy to learn by example.

Let’s design a simple schema for a personnel registry. Each document will
describe one person and will remember their name and age:

>>> person_schema = {
... "type": "object",
... "title": "Person record",
... "description": "Simplified description of a person",
... "properties": {
... "name": {
... "type": "string",
... "title": "Full name"
... },
... "age": {
... "type": "number",
... "title": "Age in years"
... }
... }
... }

This schema can be read as follows:

	The root element is an object titled “Person record”.

	It has a property “name” that is a string titled “Full name”.

	It also has a property “age” that is a number titled “Age in years”

This schema is very simple but it already defines the correct shape of a
document. It defines the type of the root object (a json “object”, for python
that translates to a dictionary instance). It also describes the attributes of
that object (name and age) and their type. The schema also mixes documentation
elements via the “title” and “description” properties.

Using a schema you can validate documents for correctness. Let’s see how that
works:

>>> joe = Document({"name": "joe", "age": 32}, person_schema)
>>> joe.validate()

Calling validate() would have
raised an exception if joe was not a valid “Person record”. Let’s set the age
to an invalid type to see how that works:

>>> joe["age"] = "thirty two"
>>> joe.validate()
Traceback (most recent call last):
...
ValidationError: ValidationError: Object has incorrect type (expected number) object_expr='object.age', schema_expr='schema.properties.age.type')

Boom! Not only did the validation fail. We’ve got a detailed error message that
outlines the problem. It also gives us the JavaScript expression that describes
the part that did not match the schema (object.age) and the part of the schema
that was violated (schema.properties.age.type).

Because the actual value is hidden behind the .value property we can stash a
set of useful properties and methods in each DocumentFragment. One of them
is .schema which unsurprisingly returns the associated schema element (if
we have one). Instead of returning the raw JSON schema it returns a smart wrapper
around it that has properties corresponding to each legal schema part (such as
.type and .properties). You can use it to access meta-data such as
title and description:

>>> joe["age"].schema.title
'Age in years'
>>> joe.schema.description
'Simplified description of a person'

You can also access things like type but be aware that it has some quirks.
Refer to json-schema-validator documentation for details on the Schema class.
For example, the type is automatically converted to a list of valid types:

>>> joe["name"].schema.type
['string']

One useful property is .schema.optional which tells if if an element is
required or not. By default everything is required, unless marked optional:

>>> joe["name"].schema.optional
False

 Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JSON Document 0.8 documentation

Core features

So now you know roughly about documents and schema. You know that accessing
items on a document instance returns
DocumentFragment objects (that have a
value and
schema properties) but setting
items sets the value directly. You know that a document may have an associated
schema and that calling
validate() checks for errors.

Supported types

Now let’s expand that. So far we’ve only used objects (that map to Python
dictionaries). We can use the following types in our documents:

	Dictionaries (JSON objects, schema type “object”)

	Lists (JSON arrays, schema type “array”)

	Strings (and Unicode strings, schema type “string”)

	Integers, floating point numbers and Decimals (JSON numbers, schema types “integer”, “number”)

	True and False (JSON true and false values, schema type “boolean”)

	None (JSON null value, schema type “null”)

You can use any of those items as the root object:

>>> from json_document.document import Document

>>> shopping_list = Document([])
>>> shopping_list.value.append("milk")
>>> shopping_list.value.append("cookies")
>>> shopping_list.value
['milk', 'cookies']

>>> yummy = Document("json")
>>> yummy.value
'json'

>>> life = Document(42)
>>> life.value
42

>>> long_example = Document(True)
>>> long_example.value
True

>>> surprise = Document(None)
>>> surprise.value
None

Default schema

All documents have a schema, even if you don’t specify one. By default the schema
describes an arbitrary JSON value (one of any type):

>>> doc = Document({})
>>> doc.schema
Schema({'type': 'any'})

This does not apply to fragments you create yourself. Those always inherit the schema from their
parent document (depending on the item used to create or access that fragment). Since the default
schema does not describe the foo property it is assigned an empty schema instead:

>>> doc['foo'] = 'bar'
>>> doc['foo'].schema
Schema({})

It’s important to point out that default type is any. It allows the value
to be of any previously mentioned type:

>>> doc['foo'].schema.type
['any']

Schema on fragments

It’s pretty obvious but important to point out that when a schema describes a
document and you access a fragment of that document the fragment’s schema is
the corresponding fragment of the whole:

>>> doc = Document({"foo": "bar"}, {"properties": {"foo": {"type": "string"}}})
>>> doc["foo"].schema
Schema({'type': 'string'})

This is very useful when you consider that a schema can specify default values
for missing elements.

Using default values

Having a schema for a document is not only useful because you can validate it.
It is also useful because you can embed default values in the schema and
transparently use them as if they were specified in the document.

Let’s see how this works. Imagine a simple application that has a save on
exit feature. The application starts up, loads settings from a configuration
file and does something useful. When the user quits the application it can save
the current document without asking for confirmation. Traditionally you’d embed
the default value in the code of your application. If you were smart you’d
build an API for your configuration to transparently provide the default for
you (or you’d generate the default configuration file if it was missing).

Both of those approaches are not very nice in practice. The former requires you
to build additional layers of API around your basic notion of configuration.
The latter prevents you from differentiating default values and settings
identical to default values.

We can do better than that. Let’s start with describing our configuration
schema:

>>> schema = {
... "type": "object",
... "properties": {
... "save_on_exit": {
... "type": "boolean",
... "default": True,
... "optional": True
... }
... }
... }

There are a couple of new elements here:

	The default value is specified, exactly once, in the schema

	The property is marked as optional, when missing the document will
still be valid.

Let’s create a configuration object to see how this works:

>>> config = Document({}, schema)
>>> config["save_on_exit"].value
True

Success! Still a little verbose but already doing much, much better. The
default value was looked up in the schema and provided in place of our missing
configuration option. We can see this option is default by accessing a few
methods and properties. With
is_default you can check if .value is a
real thing or a substitute from the schema. With
default_value you can see what
the default is. Lastly, with
default_value_exists you can
check if there even is a default specified. After all, if the schema has no
defaults then your code will simply trigger an exception instead:

>>> config["save_on_exit"].is_default
True
>>> config["save_on_exit"].default_value
True
>>> config["save_on_exit"].default_value_exists
True

We can still change the value as we had before, all of that works as expected.
The non-obvious part is what the value of our document is. Before we change
anything it is still left as-is, as we provided it initially, that is, empty.:

>>> config.value
{}

If we change it, however, it reflects that change:

>>> config["save_on_exit"] = False
>>> config.value
{'save_on_exit': False}

Reverting to defaults

Let’s suppose our application wants to provide a “revert to defaults” button
that resets all configuration options to what was provided out of the box.
JSON document has a sweet feature to support this kind of behavior.

Let’s start with some settings we loaded for this user (we are reusing the
schema from the previous example):

>>> config = Document({"save_on_exit": True}, schema)

The first thing to point out is that a default value is a ‘special’ thing.
Being equal to the default value is not the same as being default. Here, the
save_on_exit option is True, the same as the default from the schema. It is
not default though:

>>> config["save_on_exit"].is_default
False

To really make it default you need to call the
revert_to_default() method:

>>> config["save_on_exit"].revert_to_default()
>>> config["save_on_exit"].value
True
>>> config["save_on_exit"].is_default
True

When you do that the document is transformed and the part we’ve customized is
removed. Obviously without a default value in the schema this method would
raise an exception with an appropriate message:

>>> config.value
{}

Defaults are a very powerful system. Used correctly they allow applications to
recover from manually edited configuration files (config errors), allow users
to customize parts of their configuration while allowing defaults to evolve
with future versions and significantly simplify application configuration
handling for programmers where less checking is needed, especially when coupled
with JSON schema validation that can not only shape but constrain values of
specific properties.

Fragments and references

So far in this document we’ve been referring to document fragments by accessing
dictionary items and array elements on the root document object. Accessing
those items transparently creates
DocumentFragment instances. Wrapper objects
pointing to a sub-tree of the document object. It is possible to save those
references and use them freely for convenience. Let’s see how this works:

>>> doc = Document({})
>>> doc["list"] = [1, 2, 3]
>>> doc["dict"] = {"hello": "world"}
>>> doc["value"] = "I'm a plain string"

For clarity, this is how the document looks like now:

>>> doc.value
{'dict': {'hello': 'world'}, 'list': [1, 2, 3], 'value': "I'm a plain string"}

Let’s obtain a reference to the list:

>>> lst = doc["list"]

A document fragment is much like a document itself
(Document is also a DocumentFragment subclass)
it has a .value and .schema properties. It has a revert_to_default() method and
everything you’ve learned so far.

It can also be modified, and here it gets interesting. You can modify the value
by assigning to the .value property:

>>> lst.value
[1, 2, 3]
>>> lst.value = [4, 5]
>>> lst.value
[4, 5]

The interesting part is that this automatically integrates into the document
this fragment is a part of:

>>> doc.value
{'dict': {'hello': 'world'}, 'list': [4, 5], 'value': "I'm a plain string"}

In general it you can freely modify the tree and it will work as expected:

>>> dct = doc["dict"]
>>> dct.value = {'hello': 'there'}
>>> val = doc["value"]
>>> val.value = 42
>>> doc.value
{'dict': {'hello': 'there'}, 'list': [4, 5], 'value': 42}

You can also use mutating methods (those that alter the state of the value), in
this case you are not assigning a new value to the .value property but rather
calling some method on it:

>>> lst.value.append(6)
>>> dct.value['hello'] = 'joe'
>>> doc.value
{'dict': {'hello': 'joe'}, 'list': [4, 5, 6], 'value': 42}

Fragments also have a few interesting properties. The .document property allows
you to reach the document object this fragment is a part of. The .parent
property points to the parent fragment (say, if you have a fragment to member
of a list then the .parent will be pointing to the list itself). The .item
property is perhaps named confusingly but it is the index of this fragment in
the parent fragment (the list index or dictionary key)

Fragments also have few special methods that make using them more natural in
python. You can check the length (of strings, dicts and lists), you can check
for membership using the foo in bar syntax. You can also iterate over
containers (lists and dicts only)

Orphaned fragments

Since you can keep references to fragments around for as long as you like it is
possible to create an interesting situation. It is only interesting in a
problematic way though. A fragment can become orphaned (and useless) when its
parent (or its parent, all the way up to the root document object) are
overwritten. Let’s see how this works:

>>> doc = Document({})
>>> doc['foo'] = 'bar'
>>> foo = doc['foo']
>>> doc.value = {}
>>> foo.is_orphaned
True

So now the foo fragment is an orphaned. A few things happen when this
occurs:

	The .document property is set to None

	The .parent property is set to None

	The .value is set to a deep copy of the original value

So for all intents and purposes an orphaned node is independent leftover that
is totally disconnected from the original. This means that changing its value
is not going to alter the document anymore (since this would make no sense). In
fact, attempting to change the value will raise an
OrphanedFragmentError:

>>> foo.value = "barf"
Traceback (most recent call last):
...
OrphanedFragmentError: Attempt to modify orphaned document fragment

Usually when you see this it indicates a programming error. If you want to keep
using something don’t overwrite its parent. For convenience it is not an error
to read from an orphaned fragment as it is useful in some cases and provides
some level of ‘transaction isolation’ where you can bet that you’ve got a
working fragment (just that the writes will fail)

 Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	JSON Document 0.8 documentation

Advanced features

If you got this far you know pretty much everything there is about the basic
feature set. The rest of this document will make you more productive by letting
you write less code and by letting you write code that is more natural to read
and use later.

Custom fragments

Since you get fragment objects every time you access some of its parts would
not it be nice to be able to put your custom methods there? This way you could
somewhat forget about working with JSON and see this as a part of your class
hierarchy.

I thought it was useful so here it is. You need to have a schema for your
document the reason for that is we’ll be embedding special schema elements that
will override the instantiated fragment class. Usually this is simple but it is
boiler-plate-ish at times:

For the sake of documentation we’ll be writing a word counter program that will
store the count of each encountered word. We’ll need to subclass
DocumentFragment so let’s pull that in to our namespace:

>>> from json_document.document import Document, DocumentFragment

The Word class is what will represent each word we’ve encountered. We’ll start
by keeping it simple, just a inc() method:

>>> class Word(DocumentFragment):
...
... def inc(self):
... self.value += 1

The WordCounter class will be a custom Document that just has the schema. Here
we also see that the schema can be defined once in the document class by
creating a document_schema property. This is convenient when you have one
schema and want to make the life of your users easier. The schema defines an
object (with a default value of {}). This object can have additional properties
(that is, properties not explicitly mentioned in the schema) but each one has
to be an integer. If missing the default value of each property is zero.
Finally the special __fragment_cls schema entry instructs which
DocumentFragment sub-class to instantiate:

>>> class WordCounter(Document):
...
... document_schema = {
... 'type': 'object',
... 'default': {},
... 'additionalProperties': {
... 'type': 'integer',
... 'default': 0,
... '__fragment_cls': Word
... }
... }

Having done that we can now start using this:

>>> doc = WordCounter({})

Default values work:

>>> doc['json'].value
0

As did our custom class declaration:

>>> for word in "json is a nice thing to keep your data, json".split():
... doc[word].inc()

Finally the data is saved and we can inspect it or save it later:

>>> doc['json'].value
2

Value bridge

So we have all the nice features so far, we even have custom fragment classes
to keep our code more maintainable and readable. The last thing that was
annoying me was the need to use dictionary notation to access my fragments. I
wanted to use object traversal notation instead. I ended up writing a lot of
properties that were just exposing the fragment in a more natural syntax.

Let’s see what it was like:

>>> class Config(Document):
...
... document_schema = {
... 'type': 'object',
... 'default': {},
... 'properties': {
... 'save_on_exit': {
... 'type': 'bool',
... 'default': True
... }
... }
... }
...
... @property
... def save_on_exit(self):
... return self['save_on_exit']

>>> conf = Config()
>>> conf.save_on_exit.value
True

It worked but was somewhat tedious (I had to repeat the name of the property.
It was also annoying if it the property was a simple value (not something more
complicated that itself would be having extra methods/state) and I had to type
.value all the time.

So I wrote three good decorators that made this easy. They are all in the bridge module:

>>> from json_document import bridge

We can now improve our Config class with one of them the ‘readwrite’ bridge:

>>> class BetterConfig(Config):
...
... @bridge.readwrite
... def save_on_exit(self):
... ''' documentation on this property '''

The intent and code is very clear, it simply allows you to read and write the
.value directly, without having the extra lookup on your side. It also gives
your JSON document pythonic look and documentation:

>>> conf = BetterConfig()
>>> conf.save_on_exit
True
>>> conf.save_on_exit = False
>>> conf.save_on_exit
False

If something is not really going to change (say you are only reading a part of
a document that is modified by third party program) you can make that explicit
in your code by using bridge.readonly instead.

Fragment bridge

Fragment bridge is very similar to the value bridge (readonly and readwrite)
but instead of returning the value it returns the fragment itself. It allows
for more readable code that can still access all the methods and properties
that DocumentFragment provides.

I found it useful to document my JSON structure on the python side by mapping
larger pieces of the schema to custom classes and putting fragment bridges in
the document class.

Let’s say you have a person record with first and last name strings:

>>> class PersonName(DocumentFragment):
... """ Person's name """
...
... @bridge.readwrite
... def first(self):
... """ First name """
...
... @bridge.readwrite
... def last(self):
... """ Last name """
...
... @property
... def full(self):
... return "%s %s" % (self.first, self.last)

>>> class Person(Document):
... """ Person record """
...
... document_schema = {
... 'type': object,
... 'properties': {
... 'name': {
... 'type': 'object',
... 'default': {},
... '__fragment_cls': PersonName,
... 'properties': {
... 'first': {
... 'type': 'string'
... },
... 'last': {
... 'type': 'string'
... }
... }
... }
... }
... }
...
... @bridge.fragment
... def name(self):
... """ Name data """

Uh, that was verbose, the good part is that after the bulky class is
written we can write lean code using that class. Let’s see how this works:

>>> john = Person({})
>>> john.name.first = "John"
>>> john.name.last = "Doe"
>>> john.name.full
'John Doe'
>>> john.value
{'name': {'last': 'Doe', 'first': 'John'}}

Did you notice this was a JSON object? Nice eh :-)

That’s it

 Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	JSON Document 0.8 documentation

Code Reference

json_document.document

Document and fragment classes

	
class json_document.document.Document(value, schema=None)

	Class representing a smart JSON document

A document is also a fragment that wraps the entire value. Is inherits all
of its properties. There are two key differences: a document has no parent
fragment and it holds the revision counter that is incremented on each
modification of the document.

	
revision

	Return the revision number of this document.

Each change increments this value by one. You should not really care
about the count as sometimes the increments may be not what you
expected. It is best to use this to spot difference (if your count is
different than mine we’re different).

	
class json_document.document.DocumentFragment(document, parent, value, item=None, schema=None)

	Wrapper around a fragment of a document.

Fragment may wrap a single item (such as None, bool, int, float, string) or
to a container (such as list or dict). You can access the value pointed to
with the value property.

Each fragment is linked to a parent fragment and the
:attr:’document itself. When the parent fragment wraps a list or a
dictionary then the index (or key) that this fragment was references as is
stored in item. Sometimes this linkage becomes broken and a
fragment is considered orphaned. Orphaned fragments still allow you to read
the value they wrap but since they are no longer associated with any
document you cannot set the value anymore.

Fragment is also optionally associated with a schema (typically the
relevant part of the document schema). When schema is available you can
validate() a fragment for correctness. If the schema designates a
default_value you can revert_to_default() to discard the
current value in favour of the one from the schema.

	
default_value

	Get the default value.

Note: This method will raise SchemaError if the default is not defined
in the schema

	
default_value_exists

	Returns True if a default value exists for this fragment.

The default value can be accessed with default_value. You can
also revert the current value to default by calling
revert_to_default().

When there is no default value any attempt to use or access it will
raise a SchemaError.

	
document

	The document object (the topmost parent document fragment)

	
is_default

	Check if this fragment points to a default value.

Note

A fragment that points to a value equal to the value of the default
is not considered default. Only fragments that were not
assigned a value previously are considered default.

	
is_orphaned

	Check if a fragment is orphaned.

Orphaned fragments can occur in this scenario:

>>> doc = Document()
>>> doc["foo"] = "value"
>>> foo = doc["foo"]
>>> doc.value = {}
>>> foo.is_orphaned
True

That is, when the parent fragment value is overwritten.

	
item

	The index of this fragment in the parent collection.

Item is named somewhat misleadingly. It is the name of the index that
was used to access this fragment from the parent fragment. Typically
this is the dictionary key name or list index.

	
parent

	The parent fragment (if any)

The document root (typically a Document instance) has no
parent. If the parent exist then fragment.parent[fragment.item]
points back to the same value as fragment but wrapped in a
different instance of DocumentFragment.

	
revert_to_default()

	Discard current value and use defaults from the schema.

@raises TypeError: when default value does not exist
Revert the value that this fragment points to to the default value.

	
schema

	Schema associated with this fragment

Schema may be None

This is a read-only property. Schema is automatically provided when a
sub-fragment is accessed on a parent fragment (all the way up to the
document). To provide schema for your fragments make sure to include
them in the properties or items. Alternatively you can provide
additionalProperties that will act as a catch-all clause allowing
you to define a schema for anything that was not explicitly matched by
properties.

	
validate()

	Validate the fragment value against the schema

	
value

	Value being wrapped by this document fragment.

Getting reads the value (if not is_default) from the document
or transparently returns the default values from the schema (if
default_value_exists).

Setting a value instantiates default values in this or any parent
fragment. That is, if the value of this fragment or any of the parent
fragments is default (is_default returns True), then the
default value is copied and used as the effective value instead.

When is_default is True setting any value (including the value
of default_value) will overwrite the value so that
is_default will return False. If you want to set the default
value use revert_to_default() explicitly.

Setting a value that is different from the current value bumps the
revision of the whole document.

	
class json_document.document.DocumentPersistence(document, storage, serializer=None)

	Simple glue layer between document and storage:

document <-> serializer <-> storage

You can have any number of persistence instances associated with a
single document.

	
load()

	Load the document from the storage layer

	
save()

	Save the document to the storage layer.

The document is only saved if the document was modified since
it was last saved. The document revision is non-persistent
property (so you cannot use it as a version control system) but
as long as the document instance is alive you can optimize
saving easily.

Exceptions

	
exception json_document.errors.DocumentError(document, msg)

	Base class for all Document exceptions.

	
exception json_document.errors.DocumentSyntaxError(document, error)

	Syntax error in document

	
exception json_document.errors.DocumentSchemaError(document, error)

	Schema error in document

	
exception json_document.errors.OrphanedFragmentError(fragment)

	Exception raised when an orphaned document fragment is being modified.

A fragment becomes orphaned if a saved reference no longer belongs to any
document tree. This can happen when one reverts a document fragment to
default value while still holding references do elements of that fragment.

	
exception json_document.errors.DocumentError(document, msg)

	Base class for all Document exceptions.

	
exception json_document.errors.DocumentSchemaError(document, error)

	Schema error in document

	
exception json_document.errors.DocumentSyntaxError(document, error)

	Syntax error in document

	
exception json_document.errors.OrphanedFragmentError(fragment)

	Exception raised when an orphaned document fragment is being modified.

A fragment becomes orphaned if a saved reference no longer belongs to any
document tree. This can happen when one reverts a document fragment to
default value while still holding references do elements of that fragment.

json_document.serializers

Document serializer classes

	
class json_document.serializers.JSON

	JSON class encapsulates loading and saving JSON files using simplejson
module. It handles ‘raw’ json without any of the additions specified in the
Document class.

	
classmethod dump(stream, doc, human_readable=True, sort_keys=False)

	Dump JSON to a stream-like object

	Discussion:	If human_readable is True the serialized stream is meant to be
read by humans, it will have newlines, proper indentation and
spaces after commas and colons. This option is enabled by default.

If sort_keys is True then resulting JSON object will have sorted
keys in all objects. This is useful for predictable format but is
not recommended if you want to load-modify-save an existing
document without altering it’s general structure. This option is
not enabled by default.

	Return value:	None

	
classmethod dumps(doc, human_readable=True, sort_keys=False)

	Dump JSON to a string

	Discussion:	If human_readable is True the serialized value is meant to be read
by humans, it will have newlines, proper indentation and spaces
after commas and colons. This option is enabled by default.

If sort_keys is True then resulting JSON object will have sorted
keys in all objects. This is useful for predictable format but is
not recommended if you want to load-modify-save an existing
document without altering it’s general structure. This option is
not enabled by default.

	Return value:	JSON document as string

	
classmethod load(stream, retain_order=True)

	Load a JSON document from the specified stream

	Discussion:	The document is read from the stream and parsed as JSON text.

	Return value:	The document loaded from the stream. If retain_order is True then
the resulting objects are composed of ordered dictionaries. This
mode is slightly slower and consumes more memory but allows one to
save the document exactly as it was before (apart from whitespace
differences).

	Exceptions:	
	JSONDecodeError

	When the text does not represent a correct JSON document.

	
classmethod loads(text, retain_order=True)

	Same as load() but reads data from a string

	
exception json_document.serializers.JSONDecodeError(msg, doc, pos, end=None)[source]

	Subclass of ValueError with the following additional properties:

msg: The unformatted error message
doc: The JSON document being parsed
pos: The start index of doc where parsing failed
end: The end index of doc where parsing failed (may be None)
lineno: The line corresponding to pos
colno: The column corresponding to pos
endlineno: The line corresponding to end (may be None)
endcolno: The column corresponding to end (may be None)

json_document.storage

Storage classes (for storing serializer output)

	
class json_document.storage.FileStorage(pathname, ignore_missing=False)

	File-based storage class.

This class is used in conjunction with
DocumentPersistance to bind a Document
to a file (via a serializer).

	
read()

	Read all data from the file.

Data is transparently interpreted as UTF-8 encoded Unicode string. If
ignore_missing is True and the file does not exist an empty string is
returned instead.

	
write(data)

	Write the specified data to the file

The data overwrites anything present in the file earlier. If data is an
Unicode object it is automatically converted to UTF-8.

	
class json_document.storage.IStorage

	Interface for storage classes

	
read()

	Read all data from the storage

	
write(data)

	Write data to the storage

json_document.bridge

Collection of decorator methods for accessing document fragments

You want to use those decorators if you are not interested in raw JSON or
high-level DocumentFragments (which would require you to access each value via
the .value property) but want to offer a pythonic API instead.

	
json_document.bridge.fragment(func)

	Bridge to a document fragment.

The name of the fragment is identical to to the name of the decorated
function. The function is never called, it is only used to obtain the
docstring.

This is equivalent to:

@property
def foo(self):
 return self['foo']

	
json_document.bridge.readonly(func)

	Read-only bridge to the value of a document fragment.

The name of the fragment is identical to to the name of the decorated
function. The function is never called, it is only used to obtain the
docstring.

This is equivalent to:

@property
def foo(self):
 return self['foo'].value

	
json_document.bridge.readwrite(func)

	Read-write bridge to the value of a document fragment.

The name of the fragment is identical to to the name of the decorated
function. The function is never called, it is only used to obtain the
docstring.

This is equivalent to:

@property
def foo(self):
 return self['foo'].value

Followed by:

@foo.setter
def foo(self, new_value):
 return self['foo'] = new_value

 Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	JSON Document 0.8 documentation

 Python Module Index

 j

 			

 		
 j	

 	[image: -]
 	
 json_document	

 	
 	
 json_document.bridge	

 	
 	
 json_document.document	

 	
 	
 json_document.errors	

 	
 	
 json_document.serializers	

 	
 	
 json_document.storage	

 Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	JSON Document 0.8 documentation

Index

 D
 | F
 | I
 | J
 | L
 | O
 | P
 | R
 | S
 | V
 | W

D

 	

 	default_value (json_document.document.DocumentFragment attribute)

 	default_value_exists (json_document.document.DocumentFragment attribute)

 	Document (class in json_document.document)

 	document (json_document.document.DocumentFragment attribute)

 	DocumentError, [1]

 	DocumentFragment (class in json_document.document)

 	

 	DocumentPersistence (class in json_document.document)

 	DocumentSchemaError, [1]

 	DocumentSyntaxError, [1]

 	dump() (json_document.serializers.JSON class method)

 	dumps() (json_document.serializers.JSON class method)

F

 	

 	FileStorage (class in json_document.storage)

 	

 	fragment() (in module json_document.bridge)

I

 	

 	is_default (json_document.document.DocumentFragment attribute)

 	is_orphaned (json_document.document.DocumentFragment attribute)

 	

 	IStorage (class in json_document.storage)

 	item (json_document.document.DocumentFragment attribute)

J

 	

 	JSON (class in json_document.serializers)

 	json_document (module)

 	json_document.bridge (module)

 	json_document.document (module)

 	

 	json_document.errors (module)

 	json_document.serializers (module)

 	json_document.storage (module)

 	JSONDecodeError

L

 	

 	load() (json_document.document.DocumentPersistence method)

 	

 	(json_document.serializers.JSON class method)

 	

 	loads() (json_document.serializers.JSON class method)

O

 	

 	OrphanedFragmentError, [1]

P

 	

 	parent (json_document.document.DocumentFragment attribute)

R

 	

 	read() (json_document.storage.FileStorage method)

 	

 	(json_document.storage.IStorage method)

 	readonly() (in module json_document.bridge)

 	readwrite() (in module json_document.bridge)

 	

 	revert_to_default() (json_document.document.DocumentFragment method)

 	revision (json_document.document.Document attribute)

S

 	

 	save() (json_document.document.DocumentPersistence method)

 	

 	schema (json_document.document.DocumentFragment attribute)

V

 	

 	validate() (json_document.document.DocumentFragment method)

 	

 	value (json_document.document.DocumentFragment attribute)

W

 	

 	write() (json_document.storage.FileStorage method)

 	

 	(json_document.storage.IStorage method)

 Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/comment.png

_static/plus.png

_static/ajax-loader.gif

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		JSON Document 0.8 documentation »

 All modules for which code is available

		json_document.bridge

		json_document.document

		json_document.errors

		json_document.serializers

		json_document.storage

		simplejson.scanner

 © Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

_modules/simplejson/scanner.html

 Navigation

 		
 index

 		
 modules |

 		JSON Document 0.8 documentation »

 		Module code »

 Source code for simplejson.scanner

"""JSON token scanner
"""
import re
def _import_c_make_scanner():
 try:
 from simplejson._speedups import make_scanner
 return make_scanner
 except ImportError:
 return None
c_make_scanner = _import_c_make_scanner()

__all__ = ['make_scanner', 'JSONDecodeError']

NUMBER_RE = re.compile(
 r'(-?(?:0|[1-9]\d*))(\.\d+)?([eE][-+]?\d+)?',
 (re.VERBOSE | re.MULTILINE | re.DOTALL))

[docs]class JSONDecodeError(ValueError):
 """Subclass of ValueError with the following additional properties:

 msg: The unformatted error message
 doc: The JSON document being parsed
 pos: The start index of doc where parsing failed
 end: The end index of doc where parsing failed (may be None)
 lineno: The line corresponding to pos
 colno: The column corresponding to pos
 endlineno: The line corresponding to end (may be None)
 endcolno: The column corresponding to end (may be None)

 """
 # Note that this exception is used from _speedups
 def __init__(self, msg, doc, pos, end=None):
 ValueError.__init__(self, errmsg(msg, doc, pos, end=end))
 self.msg = msg
 self.doc = doc
 self.pos = pos
 self.end = end
 self.lineno, self.colno = linecol(doc, pos)
 if end is not None:
 self.endlineno, self.endcolno = linecol(doc, end)
 else:
 self.endlineno, self.endcolno = None, None

 def __reduce__(self):
 return self.__class__, (self.msg, self.doc, self.pos, self.end)

def linecol(doc, pos):
 lineno = doc.count('\n', 0, pos) + 1
 if lineno == 1:
 colno = pos + 1
 else:
 colno = pos - doc.rindex('\n', 0, pos)
 return lineno, colno

def errmsg(msg, doc, pos, end=None):
 lineno, colno = linecol(doc, pos)
 msg = msg.replace('%r', repr(doc[pos:pos + 1]))
 if end is None:
 fmt = '%s: line %d column %d (char %d)'
 return fmt % (msg, lineno, colno, pos)
 endlineno, endcolno = linecol(doc, end)
 fmt = '%s: line %d column %d - line %d column %d (char %d - %d)'
 return fmt % (msg, lineno, colno, endlineno, endcolno, pos, end)

def py_make_scanner(context):
 parse_object = context.parse_object
 parse_array = context.parse_array
 parse_string = context.parse_string
 match_number = NUMBER_RE.match
 encoding = context.encoding
 strict = context.strict
 parse_float = context.parse_float
 parse_int = context.parse_int
 parse_constant = context.parse_constant
 object_hook = context.object_hook
 object_pairs_hook = context.object_pairs_hook
 memo = context.memo

 def _scan_once(string, idx):
 errmsg = 'Expecting value'
 try:
 nextchar = string[idx]
 except IndexError:
 raise JSONDecodeError(errmsg, string, idx)

 if nextchar == '"':
 return parse_string(string, idx + 1, encoding, strict)
 elif nextchar == '{':
 return parse_object((string, idx + 1), encoding, strict,
 _scan_once, object_hook, object_pairs_hook, memo)
 elif nextchar == '[':
 return parse_array((string, idx + 1), _scan_once)
 elif nextchar == 'n' and string[idx:idx + 4] == 'null':
 return None, idx + 4
 elif nextchar == 't' and string[idx:idx + 4] == 'true':
 return True, idx + 4
 elif nextchar == 'f' and string[idx:idx + 5] == 'false':
 return False, idx + 5

 m = match_number(string, idx)
 if m is not None:
 integer, frac, exp = m.groups()
 if frac or exp:
 res = parse_float(integer + (frac or '') + (exp or ''))
 else:
 res = parse_int(integer)
 return res, m.end()
 elif nextchar == 'N' and string[idx:idx + 3] == 'NaN':
 return parse_constant('NaN'), idx + 3
 elif nextchar == 'I' and string[idx:idx + 8] == 'Infinity':
 return parse_constant('Infinity'), idx + 8
 elif nextchar == '-' and string[idx:idx + 9] == '-Infinity':
 return parse_constant('-Infinity'), idx + 9
 else:
 raise JSONDecodeError(errmsg, string, idx)

 def scan_once(string, idx):
 if idx < 0:
 # Ensure the same behavior as the C speedup, otherwise
 # this would work for *some* negative string indices due
 # to the behavior of __getitem__ for strings. #98
 raise JSONDecodeError('Expecting value', string, idx)
 try:
 return _scan_once(string, idx)
 finally:
 memo.clear()

 return scan_once

make_scanner = c_make_scanner or py_make_scanner

 © Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/up-pressed.png

search.html

 Navigation

 		
 index

 		
 modules |

 		JSON Document 0.8 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2010-2012, Zygmunt Krynicki.
 Created using Sphinx 1.3.5.

_static/down.png

_static/up.png

